Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 299, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268882

RESUMO

Grona styracifolia is a photophilous legume that contains abundant flavonoids with multiple pharmacological activities, which is used to cure urethral and biliary calculus in China for thousands of years. The authentication of the rate-limiting enzymes involved in the flavonoids biosynthesis pathway enabled a better understanding of the molecular aspect of quality formation and modulation of this medicinal herb. In this study, the chemical distribution characteristics and content of flavonoids in different tissues of Grona styracifolia were analyzed using ultraperormance liquid chromatography coupled with Q-TOF mass spectrometry and showed that active flavonoids were primarily synthesized and stored in the leaves. Subsequently, RNA sequencing (RNA-seq)-based transcriptome profiling of the different tissues revealed that the flavonoids biosynthesis in the leaves was the most active. Meanwhile, 27 full-length transcripts inferred encoding vital enzymes involved in the flavonoids biosynthesis were preliminarily excavated. Finally, four CHSs, four CHIs, and one FNSII were successfully characterized by heterologous expression, which involved in three rate-limiting steps of the flavonoid biosynthetic pathway. In conclusion, these results laid a foundation for further investigation of the molecular mechanism of the biosynthesis and modulation of active flavonoids in Grona styracifolia.


Assuntos
Fabaceae , Plantas Medicinais , Transcriptoma , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Med Food ; 26(6): 401-415, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36787478

RESUMO

In China, Perillae folium is widely used to treat colds, especially in the early stages of cold; the effect of taking P. folium is readily noticeable at that time. The active compounds and targets of P. folium were screened from Traditional Chinese Medicine Systems Pharmacology, Chinese Pharmacopoeia, and UniProt. Targets related to the initiation and progression of 2019 Coronavirus Disease (COVID-19) were retrieved from Online Mendelian Inheritance in Man and GeneCards. The potential therapeutic targets of P. folium on COVID-19 were the cross targets between them. Enrichment analysis of Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted by using the Database for Annotation, Visualization and Integrated Discovery website. Molecular docking between key compounds and core targets was performed with AutoDock. The effects of P. folium extract and rosmarinic acid on inflammatory cytokines were tested by a cellular inflammatory model. The "Perillae folium-compound-target-COVID-19" network contained 11 kinds of compounds and 33 matching targets. There were 261 items in the GO functions (P < .05) and 67 items linked to the KEGG signaling pathways (P < .05). Luteolin and rosmarinic acid were key compounds of P. folium. Their docking with the core targets mitogen-activated protein kinase 1 (MAPK1) and chemokine (C-C motif) ligand 2 (CCL2), respectively, showed that they had good affinity with each other. Cell experiments demonstrated that P. folium extract had inhibitory effects on interleukin-6 and tumor necrosis factor (TNF)-α in cells, and was better than rosmarinic acid. Luteolin, rosmarinic acid, and other individual active compounds in P. folium, which may participate in PI3K-Akt, TNF, Jak-STAT, COVID-19, and other multisignaling pathways through multiple targets such as MAPK1 and CCL2, and play a therapeutic role in COVID-19.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Luteolina/farmacologia , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Medicamentos de Ervas Chinesas/farmacologia , Ácido Rosmarínico
3.
Biotechnol Appl Biochem ; 70(3): 1421-1434, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807387

RESUMO

The purpose of this article is to design a green and comprehensive utilization process for preparing chitosan from crab shells. Glutamate acid was used as a decalcifying agent for crab shells, and the mixed solution of potassium hydroxide/isopropanol was used for deproteinization and deacetylation to prepare chitosan. Glutamic acid and isopropanol could be recovered for recycling. At the same time, calcium carbonate and protein in crab shells were converted into calcium hydrogen phosphate and compound fertilizer containing nitrogen, phosphorus, and potassium, respectively. The prepared chitosan was characterized by Fourier-transform infrared (FT-IR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), and scanning electron microscopy (SEM), and its deacetylation degree and viscosity average molecular weight were 88.7% ± 0.68% and 792.1 ± 10.82 kDa, respectively. The recoveries of glutamic acid and isopropanol were 95.56% ± 1.39% and 88.14% ± 1.13%, respectively. The prepared chitosan has large molecular weight and deacetylation degree, controllable production cost, comprehensive utilization of crab shell components, and greatly reduced waste emissions.


Assuntos
Braquiúros , Quitosana , Animais , Quitosana/química , Braquiúros/química , Braquiúros/metabolismo , Ácido Glutâmico/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , 2-Propanol/metabolismo , Difração de Raios X
4.
Drug Dev Ind Pharm ; 48(11): 646-656, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36469628

RESUMO

OBJECTIVE: To study the new formulation and technology of composite cellulose-based enteric capsule shell with one-time dipping molding without organic solvent. METHODS: Hydroxypropyl methylcellulose phthalate-55S (Hp55S) was used as the main film-forming material, agar as gelling agent, and hydroxypropyl methylcellulose (HPMC) as disintegrating regulator. The preparation technology was as follows: ① Hp55S was dissolved in dilute ammonia solution with pH of 10 ∼ 11 at room temperature to obtain transparent Hp55S solution. ② The mixture of HPMC, KCl, and Tween-80 was fully dispersed in the agar solution at 90 ∼ 100 °C and cooled to 50 ∼ 55 °C under continuous stirring to obtain a transparent agar/HPMC solution. ③The Hp55S solution was heated to 50 ∼ 55 °C and poured into the agar/HPMC solution and stirred evenly to obtain the composite cellulose solution, which was kept at 50 ∼ 55 °C for standby. ④The composite cellulose-based enteric capsule shells were prepared by dipping, spinning, drying, stripping and trimming, and joining. RESULTS: The composite cellulose-based enteric capsule shell prepared according to this formula and process met the quality requirements of 'enterosoluble vacant capsules' in Chinese Pharmacopeia. CONCLUSION: Compared with the traditional formula and preparation technology of enteric capsule shell, the product is a plant type enteric capsule shell, no organic solvent is used in the formula, and the forming steps of multiple dipping solution is not used in the process. The advantages of this study are that the production steps are simplified, the production process is environmentally friendly, and the production cost is reduced.


Assuntos
Celulose , Química Farmacêutica , Ágar , Metilcelulose , Derivados da Hipromelose , Tecnologia , Solventes , Cápsulas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...